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Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium
magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling
coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet
quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand,
to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong
magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the
mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube.
The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example,
the magnetic field of a dipole at the center of a short pipe of radius a and length L�a decays, in the axial
direction, with a characteristic length ��0.26a. The efficient screening of the magnetic field might be useful
for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet
through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane
channel.
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I. INTRODUCTION

There is a beautiful demonstration of Faraday’s and
Lenz’s laws which became very popular as a result of an
easy availability of powerful rare earth magnets �1–9�. The
demonstration consists of a long pipe made of a conducting,
nonferromagnetic material, such as copper or aluminum, and
a neodymium magnet which is allowed to fall through it.
One finds that the magnet takes a very long time to traverse
the pipe. In fact for a tube of about 2 m in length, the magnet
takes almost 25 s to finish the trip �9�. On the other hand, a
nonmagnetic object of the same dimensions falls through the
pipe in less than 1 s. It is quite amazing to observe the falling
magnet from the top aperture, the magnet appears to be mov-
ing through a very dense fluid. In reality, air provides only a
negligible resistance, and what actually slows the magnet is
the force produced by the eddy currents induced in the pipe.
This force is proportional to the velocity of the falling mag-
net. When the drag force becomes equal to the magnet’s
weight, acceleration ceases and the fall continues at a con-
stant terminal velocity. For strong rare earth magnets, the
terminal velocity is reached very quickly. Perhaps surpris-
ingly, in view of the complexity of the problem, it is actually
possible to perform a fairly simple calculation which agrees
quantitatively with the terminal velocity observed experi-
mentally �9�. Curiously, the calculation also predicts that the
terminal velocity should be proportional to the electrical re-
sistivity of the pipe’s material. This suggests that if the pipe
is an ideal superconductor, the velocity of the falling magnet
should vanish. One can easily see, however, that this conclu-
sion cannot be right. Suppose that a magnetic dipole is cre-
ated inside an infinite superconducting pipe. During the pro-
cess of creation, the magnetic field inside the pipe is

changing and the electric current is induced on its surface.
The surface currents screen the magnet’s field and prevent it
from entering into the interior of the superconductor. In the
case of an ideal superconductor �inertialess electrons� con-
sidered in the bulk of this paper, the penetration length is
zero and both the magnetic and the electric fields are per-
fectly screened. By symmetry it is also clear that for an in-
finitely long pipe, the magnetic field produced by the in-
duced currents is maximum precisely at the location of the
magnet. Since the magnetic force on a dipole is proportional
to the gradient of the field it must, therefore, vanish so that
the magnet will fall without any resistance. The theory of
Ref. �9� is applicable neither to superconductors nor to very
good conductors of vanishing resistivity, since it was explic-
itly constructed to treat normal metals for which the mag-
netic permeability is very close to that of vacuum. Further-
more, the rate of decay of the induced currents in such metals
is very fast, compared to the magnet fall velocity, allowing
us to neglect the effects of self-induction �9�. Clearly, neither
one of these conditions is met in the case of super or ideal
conductors which dynamically screen magnetic field from
their interior. As the resistivity of the pipe metal is decreased,
there will be a crossover from the terminal velocity found in
Ref. �9� for normal pipes to the free fall velocity inside per-
fectly conducting pipes.

Although a magnet “created” in the interior of an infinite
superconducting pipe will fall freely under the action of the
gravitational field, it takes work to bring �create� the magnet
inside the pipe in the first place. This is so because the mag-
netic field lines, which for a free dipole spread throughout
the space, must now be confined in a restricted volume. In
this paper we will calculate the work that must be done to
bring a magnet into a superconducting pipe of length L and
radius a. Furthermore, the formalism developed here can be
easily extended to study more general problems of screening
of the magnetic field in cylindrical geometry �3,4�, which are
of particular interest for the development of reliable super-
conducting quantum interference devices �5�.
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II. THE MODEL

The model that we shall study is depicted in Fig. 1. A
magnetic dipole, of moment m=mẑ, is brought from infinity
and is inserted into cylindrical superconducting pipe of
length L and radius a along the symmetry axis. This axis is
taken to coincide with the z axis of the coordinate system.
The wall thickness of the pipe is assumed to be much smaller
than the inner radius, and will therefore be ignored. The Far-
aday law of induction requires that

d��z,t�
dt

= − � E · dr , �1�

where ��z , t� is the magnetic flux passing through a cross
section of the pipe at position z and time t, and E is the local
electric field. Since the tangential component of the electric
field is continuous across the superconductor/air interface,
the right-hand side of Eq. �1� must vanish because no electric
field can be present inside a perfect conductor. Thus, the flux
passing through any cross section of the pipe must be con-
stant in time. Furthermore, when the magnet is at infinity, the
flux entering the pipe is zero, which then means that
��z , t�=0 at all future times as well. Vanishing flux is a
direct consequence of the physics of cylindrical supercon-
ductors and must be used as a boundary condition for the
solution of the Maxwell’s equations. In Fig. 1 we have made
an attempt to represent the magnetic field lines which are not
allowed to go through the pipe because of the restriction on
flux. Again we stress that this behavior is very different from
what happens with normal metals �9� for which the electric
field does not vanish and the magnetic flux changes through
different cross sections of the pipe.

Inside the superconductor, magnetic field is zero and the
continuity of the normal component of B requires that it also
vanish at the superconducting wall. The magnetic field lines
must, therefore, be tangent to the pipe’s surface. In general,
however, vanishing of Bn at the interface is not sufficient to
fully specify the boundary condition necessary for the exis-
tence of a unique solution to Maxwell equations.

III. UNIQUENESS

What are the boundary conditions which will make the
field equation

� � B = �0J �2�

have a unique solution? Suppose that Eq. �2� allows for two
distinct solutions B1 and B2 for the same value of the current
density J. Since � ·B=0, we can always define a vector po-
tential A such that B1,2=��A1,2. Now, consider the integral
over all space

� �B · �Bd3r =� � � �A · � � �Ad3r , �3�

where �B�B2−B1 and �A�A2−A1. The integrand on
the right-hand-side can be cast into more convenient form
using the identity ����A�2��A ·�����A+� · ��A��
��A�. Recalling that the current sources for the fields 1 and
2 are identical: 0=�0�J2−J1���0�J=���B=�����A,
the integrand of Eq. �3� reduces to a perfect divergence. Us-
ing the divergence theorem, the volume integral can now be
transformed into an integral over the bounding surfaces S,
which in our case are the cylinder and the spherical shell of
radius R=�:

� �B2d3r = �
S

dan̂ · ��A � � � �A� . �4�

Since the dipolar field decreases rapidly with distance, the
contribution to the integral in Eq. �4� coming from the
spherical shell at R=� vanishes, and S reduces to the surface
of the cylinder. Using the invariance of the integrand under
cyclical permutation of vectors, we see that Eq. �2� has a
unique solution ��B�r��0� either if n̂��A=0 or n̂��B
=0, on the pipe surface. To have a well posed problem it is,
therefore, not sufficient to specify only the normal compo-
nent of the magnetic field, instead the tangential components
of the field at the interface must be provided. In a cylindrical
geometry the boundary conditions posed in terms of the vec-
tor potential are particularly useful. Azimuthal symmetry
around the z axis, restricts the vector potential to have only
one non zero component in the e� direction, A=A�ê��r ,z�.
The flux through a cross section of the pipe is then

��z� =� B · n̂da

=� � � A · n̂da = � A · dr = 2	aA��a,z� . �5�

Specification of the flux passing through the pipe is, there-
fore, equivalent to the specification of A� and guarantees that
Eq. �2� has a unique solution in the cylindrical geometry.

IV. A PIPE OF INFINITE LENGTH

For superconducting pipes of L=�, Eq. �2� can be solved
analytically, while for finite L only numerical solution is pos-
sible. We start, therefore, with the L=� case.

FIG. 1. Schematics representation of a magnetic dipole descend-
ing into a superconducting tube. The flux lines are repelled from the
tube.
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The dipole of moment m=mẑ is located inside the pipe on
the axis of symmetry at z=0, r=0. In the pipe’s interior there
are no free currents and the Ampere law �2�, reduces to �
�B=0 outside the magnet. The magnetic field can then be
written as a gradient of a scalar function B=−�
. This de-
fines the scalar magnetic potential 
, which also satisfies the
Laplace equation since � ·B=0. The magnetic potential 

�
d+
ind is produced by the point dipole


d =
�0mz

4	�r2 + z2�3/2 , �6�

and by the currents induced on the surface of the supercon-
ductor. The dipole potential can be written as a Fourier inte-
gral


d�r,z� =
�0m

2	2 �
0

�

kK0�kr�sin�kz�dk . �7�

where K0 is a modified Bessel function of the second kind.
Since Eq. �6� is a solution of the Laplace equation, so must
be 
ind,

1

r

�

�r
r

�

�r

ind + �z

2
ind = 0, �8�

for r�a. We next note that 
ind must be odd in z, free of
singularities, and vanish as z→�. Under these conditions,
the solution of the Laplace equation �8� can be written in
terms of a Fourier integral involving a modified Bessel func-
tion of the first kind


ind�r,z� =
2

	
�

0

�

A�k�I0�kr�sin�kz�dk . �9�

According to the results of the previous section, the func-
tion A�k� will be uniquely determined by the condition that
��z�=0, which means that no magnetic field lines are lost to
the wall. For infinite superconducting pipe this boundary
condition, is, therefore, equivalent to the vanishing of the
normal component of the magnetic field Bn�a ,z�=0 on the
superconductor surface. Thus the normal component of the
induced field must cancel exactly the field produced by the
dipole

�r
ind	r=a = − �r
d	r=a =
�0m

2	2 �
0

�

k2K1�ka�sin�kz�dk ,

�10�

at the air/superconductor interface. To arrive at the last
equality of Eq. �10� we have used the identity dK0�x� /dx=
−K1�x�. Combining expressions �9� and �10� and using
dI0�x� /dx= I1�x�, enables us to calculate the function

A�k� =
�0m

4	

kK1�ka�
I1�ka�

. �11�

The magnetostatic scalar potential inside an infinite super-
conducting pipe is then


�r,z� =
�0mz

4	�r2 + z2�3/2 +
�0m

2	2 �
0

�

dkk sin�kz�
K1�ka�
I1�ka�

I0�kr� .

�12�

The first term on the right-hand side of Eq. �12� is the po-
tential produced by the point dipole located at r=0,z=0,
while the second term is the magnetostatic scalar potential
produced by the electric currents induced on the supercon-
ducting surface. For large z, Eq. �12� simplifies to


�r,z� �
�0m
z

2	a2z

�1 +
J0�x1r/a�
J0�x1�2 e−x1
z
/a� , �13�

where x1 is the first root of the Bessel function J1: J1�x1�
=0 with x1�3.831. One can arrive at Eq. �13� either by
extending the integration in Eq. �12� to the complex plane,
noticing that the poles of the integrand lie on the imaginary
axis and are the roots of the Bessel function J1�x�.
Alternatively—and perhaps simpler—one can calculate the
Green’s function directly as an expansion in Bessel functions
Jn.

The axial magnetic field of a dipole inside a supercon-
ducting pipe is

Bz�r,z� �
�0m

2	a2

k1J0�x1r/a�
J0�x1�2 e−x1
z
/a. �14�

The field is exponentially screened, with a characteristic
length �=a /x1�0.26a.

To confine the magnet inside a superconducting tube of
small radius costs a lot of energy. The work necessary to
achieve this can be calculated using a charging process simi-
lar to the one employed in electrostatics—the magnetic mo-
ment is built up gradually, while the magnet interacts with
the induced field of the superconductor. Since the induced
field is linearly proportional to the magnetic strength, the
charging process reduces to

W = − �
0

1

d�m · Bind��m� = −
1

2
m · Bind�m� . �15�

The field Bind can be easily obtained from the second term of
Eq. �12�, yielding

W =
�0m2

4	2a3�
0

�

dxx2K1�x�
I1�x�

� 0.797
�0m2

4	a3 . �16�

The condition that the magnetic field lines must exit the
pipe on the same side on which they entered ���z�=0�, im-
plies that the magnet can not “probe” the full length of the
pipe. Thus, if the pipe length is such that L�a, its field
screening properties should be similar to those of a pipe of
L=�. With this observation in mind we are now ready to
study the superconducting pipes of finite length.

V. PIPES OF FINITE LENGTH

Consider a superconducting pipe of finite length L placed
along the z axis, whose center coincides with the origin at
z=0. Results of the previous sections suggests that if L
a,
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shortly after the dipole finds itself inside the tube, the mag-
netic field configuration should be identical to that inside an
infinite pipe and the axial force should vanish. However,
little can be said about what kind of forces act upon the
dipole as it enters or exits the pipe. The finite length case
should, therefore, be examined with some care.

From Secs. II and III we recall that the magnetic flux at
any cross section of a superconducting pipe must vanish.
This information will be central to the practical aspects of
the theory from now on. As the dipole approaches the pipe
from z→ +�, surface currents are generated over the pipe’s
surface. It is convenient to imagine that the length of the pipe
is subdivided into uniform rings, each carrying a circulating
surface current density j�z�. The vector potential produced by
these currents has only � component and its magnitude is
given by the linear superposition

Aind�r,z� =
a�0

2
�

−L/2

+L/2

K�r,z,z��j�z��dz�, �17�

where the kernel

K�r,z,z�� = �
0

�

dke−k
z−z�
J1�kr�J1�ka� �18�

is obtained from the field produced by one thin ring �2�. The
flux generated by the surface currents at z is �ind�z�
=2	aAind�a ,z�, see Eq. �5�. For r=a the kernel can be evalu-
ated explicitly in terms of the hypergeometric function

K�a,z,z�� =

a2
2F1
3/2,3/2;3;−

4a2


z − z�
2�
2
z − z�
3

. �19�

The condition that through each cross section of the pipe the
net flux vanishes ��z , t�=0 leads to an integral equation for
the surface currents

�
−L/2

+L/2

K�z,z��j�z��dz� = −
m

2	��zm − z�2 + a2�3/2 , �20�

where zm is the coordinate of the dipole. To determine j�z�,
Eq. �20� is solved numerically by first discretizing the inte-
gral and then performing a matrix inversion. Once the cur-
rent distribution is known, the vector potential Aind is calcu-
lated using Eq. �17�. Knowing Aind, the induced magnetic
field on the axis of symmetry r=0, Bind= ẑ /r�r�rAind�
r=0 and
the magnetic force on the dipole F= ẑ�z�m ·Bind�
z=zm,r=0 can
be easily evaluated. We note that forces arising from flux
trapping in type-II superconductors are neglected in the
present discussion. For this to be a good approximation, the
superconductor must have either high critical state current
density Jc or be subjected to only small magnetic field �6–8�.
We will discuss this further in conclusions.

A. Checking the accuracy of the numerical procedure

The accuracy of the numerical procedure used to solve the
integral equation Eq. �20� can be judged by comparing it
with the analytical solution for an infinite pipe, Eq. �12�. In

Fig. 2 we compare Bind along the axis of symmetry for an
infinitely long pipe with the field calculated using a numeri-
cal integration of Eq. �20� for a pipe of L=10a, located be-
tween z=−5a and z=5a, with a point dipole at z=zm=0. The
agreement is perfect and attests to the reliability of the nu-
merical solution. Furthermore, since the axial magnetic field
is maximum at the position of the dipole, the force on it will
vanish, in agreement with our previous discussion.

In Fig. 2 we also show that asymptotically the magnetic
field is well approximated by Eq. �14�. Thus, in agreement
with the previous discussion, the axial magnetic field is
screened exponentially even for pipes of finite length, as
long as L�a.

B. End effects for superconducting tubes of finite lengths

Satisfied with the accuracy of the numerical procedure,
we can now use it to study the end effects associated with the
finite length superconducting pipes. In Fig. 3 we plot the
magnetic force felt by a magnet as it moves from infinity into
the interior of a superconducting pipe of length L=10a.
Panel �a� shows a strong repulsive force near the pipe en-
trance which vanishes rapidly as the magnet penetrates into
the pipe. In the case of small neodymium magnets �weight
6 g� used in our demonstrations of the Faraday and the Lenz
laws �9� and a superconducting pipe of radius a=7.85 mm
we find the repulsive force to be sufficient to support a
weight of 1 kg. In panel �b� we plot the work necessary to
bring the magnet from infinity to a point z. Clearly, there is a
large electromagnetic energy barrier that the magnet must
overcome to enter the pipe. Note that soon after the magnet
crosses the front edge into the interior of the tube, the poten-
tial stabilizes at a plateau the value of which is in perfect
agreement with the work found to be necessary to confine a
dipole inside an infinite superconducting tube, Eq. �16�. This
agreement is, again, a consequence of a very efficient expo-
nential screening of the magnetic field by the surface cur-

FIG. 2. Comparison of the numerical �circles� and the analytical
�full line� calculations for the induced magnetic field. The analytical
result is for L=�, while the numerical solution is for L=10a. Nev-
ertheless, there is a perfect agreement between the two. We also
compare the analytical asymptotic form �dotted line� Eq. �14� for
the axial magnetic field, with the result of the numerical integration
�squares� for L=10a, showing a clear exponential decay of the axial
field, even inside a finite superconducting pipe.
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rents, even inside pipes of finite length.
As the magnet approaches a superconducting tube, it ex-

periences a magnetic force which opposes its motion. The
magnitude of this force can be estimated using a simple scal-
ing argument. Magnetic field produced by a dipole decays
with distance as Bmagnet�m /s3. If the superconducting pipe
is sufficiently narrow �L�a� and the magnet is not too close
to the front edge, the mutual-inductance effects between the
sections of the pipe can be neglected and the induced surface
current density at distance s from the magnet will be j�s�
�Bmagnet�m /s3. On the other hand, each one of these cur-
rent loops will produce a magnetic field at the position of the
dipole, dBpipe→magnet� j�s�ds /s3�mds /s6, and will result in
a net force


Fz
 = �m2�
sd

sd+L

ds/s7 =
�m2

sd
6 f� sd

L
� , �21�

where sd= 
zm
−L /2 is the distance of the magnet to the front
edge of the pipe and � is the pipe’s polarizability factor. The
scaling function is found to be f�x��1−x6 / �1+x�6. Asymp-
totically, the force Fz behaves as


Fzsd
6
 → ��m2 if a � 
sd
 � L ,

6�m2L/
zm
 if 
sd
 � L .
�22�

Thus, if L�a, the force on the magnet decays algebraically
outside the pipe and vanishes exponentially after the magnet
enters the pipe.

The polarizability � can be calculated by considering the
far asymptotic limit of Eq. �22�. Under this condition, the
magnetic field varies only slightly over the length of the
pipe, and the induced current can be calculated analytically
by solving Eq. �20�. We find,

I =
mL

2	
zm
3
. �23�

This current will produce a magnetic field at the position of
the dipole resulting in a repulsive force

F =
3�0m2a2L

4	
zm
7
. �24�

Comparing Eqs. �24� and �22� we find the polarizability of
the superconducting pipe to be �=�0a2 /8	.

In Fig. 4�a� we compare the asymptotic force calculated
using the numerical solution of the integral Eq. �20� with the
estimate obtained using Eq. �21� for a tube of L=10a. The
agreement is very good for 
zm
�L, but poorer for smaller
values of the coordinate. The problem is that L=10a is not
sufficiently large to well satisfy the inequality a� 
zm
�L,
as demanded by the first asymptotic region of Eq. �22�. For
larger values of L, such as L=20a of Fig. 4�b�, the agreement
already is much better. The abrupt decay of Fsd

6 near the

FIG. 3. Force �a� and the potential energy �b�, for a dipole mov-
ing along the axis of symmetry of a superconducting pipe located
between �−5,5�. Although each peak of the force looks rather sym-
metric, in reality the force decays as a power outside the pipe and
exponentially inside.

FIG. 4. Asymptotic force felt by a dipole when it is far from a
superconducting pipe. Points are the result of the numerical calcu-
lation and the solid lines are the estimates obtained using Eq. �21�.
Panel �a� is for L=10a and panel �b� is for L=20a.
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entrance of the tube is a consequence of the finite cross sec-
tion of the pipe, which becomes important for small values
of sd.

VI. CONCLUSIONS

We have examined the forces and the fields produced by a
small magnet as it enters into a superconducting pipe. For an
infinitely long pipe, the magnetic field produced by the mag-
net inside the tube is exponentially screened by the surface
currents.

In the case of finite superconducting pipes we find that the
magnetic field is also exponentially screened, as long as the
length of the pipe is larger than its diameter. The exponential
screening of the magnetic field is a consequence of the Far-
aday law which leads to vanishing of the magnetic flux in-
side a superconducting tube. The flux lines can not go
through the pipe and at any cross section the number of lines
going down is the same as the number of lines coming up.
The electromagnetic cost of confining a dipole inside a su-
perconducting tube is, therefore, very large, since the field
lines must be strongly compressed to fit inside the tube. We
calculate that in order to insert a small neodymium magnet
of 6 g into a superconducting pipe of radius 8 mm requires
10 N of force. Once the magnet is inside the pipe, however,
its motion will continue unhindered. At the exit, the magnet
will be ejected with the same force that was required to insert
it into the pipe in the first place.

At this point it is interesting to reconsider the “falling
magnet paradox.” The calculations of Ref. �9� show that as
the resistivity of the pipe’s metal vanishes, the terminal ve-
locity of the magnet approaches zero. This suggests that the
magnet will become suspended inside the pipe. Clearly this
contradicts the results derived in the present paper showing
that the magnet will fall freely, after entering one tube radius
into the superconducting pipe. How can these two seemingly
diametrically opposite conclusions be reconciled? The an-
swer to this question lies in the phenomenon of self induc-
tion. While the self induction could be safely ignored in the
case of normal metals and sufficiently strong magnets con-
sidered in the Ref. �9�, it can no longer be neglected in the
limit of vanishing resistivity �. Specifically, it is possible to
argue that the self induction can be ignored only when the
fall velocity of the magnet is much less than the critical value
vc=2� /�0d, where d is the thickness of the pipe �1�. Now
consider a pipe made of a very good conductor �it does not
have to be a superconductor� inside which a dipole is created
at t=0. The creation process will induce the currents on the
walls of the conductor which will screen the magnetic field
of the dipole. However, if the conductivity of the metal is not
identically zero, the field of the dipole will eventually leak

out of the pipe. Before this happens, however, the magnet
will fall under the action of the gravitational field. In the
limit �→0 the velocity of the magnet will quickly reach vc,
and the self-induction will become relevant. Thus, for very
good conductors the results of Ref. �9� will no longer apply.
We conclude that there must be a crossover between the
regime of normal metals, for which magnets reach terminal
velocity, and the ideal conductors in which the magnets fall
freely.

It is interesting to compare the magnet’s motion through a
superconducting pipe, to the flow of ions through an ion
channel �11�. Ion channels are water filled holes, responsible
for a small electric field that exists across all biological
membranes. Since the dielectric constant inside a pore is
much larger than the dielectric constant of a phospholipid
membrane, the normal component of the electric field at the
channel/membrane interface is very small and the electric
field lines are mostly confined to stay in the pore’s interior.
In this respect, the pore is very similar to a superconducting
pipe, for which the normal component of the magnetic field
also vanishes on the boundary. Nevertheless, one finds that
contrary to what happens to a magnet inside a supercon-
ductor, the repulsive force on an ion does not vanish even
when it is far inside the channel. Ions always feel a force
which tries to expel them from the channel �except exactly at
the midpoint where, by symmetry, the force vanishes�.

The difference between the superconducting pipes and the
ion channels is precisely due to the additional constraint of
vanishing flux imposed by the Faraday law on a perfectly
conducing pipe. The requirement that the flux through any
cross section of a superconducting pipe must vanish, forces
the system into a metastable state in which the coaxial mo-
tion is free of any electromagnetic forces.

In this work we have neglected the hysterectic �flux trap-
ping� forces typically present in type-II superconductors. For
small cylindrical neodymium magnets weighing 6 g and ra-
dius r=6.35 mm moving through a superconducting pipe of
a�8 mm, the magnetic field at the pipe surface is on the
order of B�0.1 T. Considering a strong pinning condition
with a high critical state current density Jc�108 A/m2, we
estimate �6,7,10� the drag force on the magnet to be only a
small fraction �0.0001 of the force required to enter the
superconducting pipe. Thus, our results should not be much
affected even if more realistic type II superconductors are
used.
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